
11

(12) United States Patent
Dasu et al.

(54) DYNAMICALLY RECONFIGURABLE
SYSTOLIC ARRAY ACCELORATORS

(75) Inventors: Aravind Dasu, Providence, UT (US);
Robert C. Barnes, Albuquerque, NM
(US)

(73) Assignee: Utah State University, Logan, UT (US)

(*) Notice: 	Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 541 days.

(21) Appl. No.: 13/092,748

(22) Filed: 	Apr. 22, 2011

(65) 	 Prior Publication Data

US 2011/0264888 Al 	Oct. 27, 2011

Related U.S. Application Data

(60) Provisional application No. 61/327,365, filed on Apr.
23, 2010.

(51) Int. Cl.
H03K 19/177 	(2006.01)

(52) U.S. Cl.
CPC H03K 19117756 (2013.01)

(lo) Patent No.: 	US 8,710,864 B2
(45) Date of Patent: 	Apr. 29, 2014

USPC ... 326/38; 326/41

(58) Field of Classification Search
CPC H03K 19/177; H03K 19/17704; H03K

19/17724; H03K 19/17728; H03K 19/17736;
H03K 19/17756

USPC .. 326/37-41, 46
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,554,972 132* 10/2013 Koch et al 710/305
2010/0223237 Al * 	9/2010 Mishra et al 707/693

* cited by examiner

Primary Examiner Don Le

(57) ABSTRACT

A polymorphic systolic array framework that works in con-
junction with an embedded microprocessor on an FPGA, that
allows for dynamic and complimentary scaling of accelera-
tion levels of two algorithms active concurrently on the
FPGA. Use is made of systolic arrays and hardware-software
co-design to obtain an efficient multi-application acceleration
system. The flexible and simple framework allows hosting of
a broader range of algorithms and extendable to more com-
plex applications in the area of aerospace embedded systems.

14 Claims, 7 Drawing Sheets

Ito
a

) 	 Mlcroprocamr

GO-Prociwor 1,v 	
Pseudo-Cache 	720

166 168

NOW 	Al Y ~

164 F1n (b) j&J b 	 170
6 :

	 IVow t62 	to 	rya wN

Ica Box 	
172

160

U.S. Patent 	Apr. 29, 2014 	Sheet I of 7 	 US 8,710,864 B2

%~ ~ / \ \
IUD
2
OL

1wa

wt

—f

C~
er.

it

s
4

R

a
7

7

U.S. Patent 	Apr. 29, 2014 	Sheet 2 of 7
	

US 8,710,864 B2

t

t

a

r^.
.f3 	 Gf

w

U.S. Patent 	Apr. 29, 2014 	Sheet 3 of 7
	

US 8,710,864 B2

UA UA tu

10 	0* I

11 4

d

I

F

4
i

U.S. Patent 	Apr. 29, 2014 	Sheet 4 of 7

iiEtl

US 8,710,864 B2

3 	 '

3

0

-- 	=
IN 	.;.: Lu

Ei 4go%Q %uUA

IIFi
~~

~l
l
s

1
1

7
1
f

f
r1r

J
F

7

1'^y.

v

Z7
*114 w

.j`

U.S. Patent 	Apr. 29, 2014 	Sheet 5 of 7 	 US 8,710,864 B2

v

U.S. Patent 	Apr. 29, 2014 	Sheet 6 of 7 	 US 8,710,864 B2

Q

Z,

U.R. Patent 	Apr. 29, 2014 	Sheet 7of7 	US 8,710,864 G2

)
2

k %

/ 	i e
@ ~ 	 ~

a 	 _

2 	» 	$

0

@ ~

~ \ 	 ~

/ 	̂

_
~ m ~

US 8,710,864 B2
1 	 2

DYNAMICALLY RECONFIGURABLE 	 which merge the designs of multiple filters. However no KF
SYSTOLIC ARRAY ACCELORATORS 	 implementation invokes dynamic reconfiguration of the hard-

ware.
RELATED APPLICATIONS

5 	 DESCRIPTION OF THE FIGURES

This application claims the benefit under 35 U.S.C. §119
(e) of U.S. Provisional Patent Application No. 61/327,365
filed Apr. 23, 2010, and titled "Dynamically Reconfigurable
Systolic Array Accelerator" which is incorporated herein by
reference.

GOVERNMENT LICENSE RIGHTS

This invention was made with government support under
Grant No. NNG06GE54G awarded by NASA. The govern-
ment has certain rights in the invention.

TECHNICAL FIELD

The present invention relates to dynamic and complimen-
tary scaling of algorithms active concurrently on a Field Pro-
grammable Gate Array.

BACKGROUND

Over the past few years SRAM (static random access
memory) based FPGAs (field programmable gate array) have
made significant strides in device fabric features, such as
support for partial dynamic reconfiguration, immersed IP
(intellectual property) components (including embedded Xil-
inx's DSP48 and Block RAM (BRAM) modules) and design
automation tools to take advantage of these features. Their
ASIC (application specific integrated circuits) like computa-
tional capabilities and post-launch reconfiguration features
make them a viable alternative to replace microprocessors as
on-board computers.

The caveat is that the sophistication of the design ported on
an FPGA depends on the designer exploring the computation
nature of target algorithms, the flexibility they need in terms
of acceleration, judicious use of classical techniques such as
hardware-software partitioning in conjunction with newer
methods of on-chip bitstream decompression and relocation.

In one application example, to navigate in space an autono-
mous spacecraft must accurately estimate its state from noisy
measurements. The Kalman filter (KF) processes each of
these measurements and returns the optimal estimate of the
state and the error covariance. The computational complexity
of even the simple linear KF makes it difficult to run the filter
efficiently (i.e. fast enough) on traditional on-board micro-
processors. KF acceleration approaches use both novel par-
allel architectures and algorithm enhancements to make the
filter more computationally efficient. Hardware implementa-
tions of KF have been shown to dramatically improve perfor-
mance. KFs are composed of basic matrix operations: multi-
plication, addition, subtraction, and inversion. These
operations can be efficiently implemented as systolic arrays
(SA), particularly by using the Faddeev algorithm, the ben-
efits of which stem from its regularity, scalability, and its
potential for linearity, and small area requirements.

There have been some implementations of linear KFs on
FPGAs but these do not address some of the limitations of
specific features of the FPGA platform such as microproces-
sor or memory interfaces. During run-time the system model
or requirements may change due to environment changes,
sensor/actuator failure, or at scheduled times. Some have
proposed reconfigurable systems to handle these situations,
however previous approaches uses soft-reconfiguration,

FIG. 1: Generic polymorphic systolic array framework.
Each PE in a socket communicates east and west with 32-bits
for data and 4-bits for control, routed through static bus mac-

ro ros (BM) that connect to programmable switch boxes. Using
three MUXs, the switch boxes can route signals to/from the
pseudo-cache, loop signals back to the source socket, or route
a signal to the next socket.

FIG. 2: Example of scaling the Polymorphic systolic array
i5

framework. (a) The Polymorphic systolic array framework
running with 3 sockets (A, B, C) assigned to application #1
and 2 sockets (D, E) assigned to application #2. (b) Socket C
is disconnected by reprogramming the neighboring switch

20 boxes. It is then reconfigured to support a systolic array PE of
application #2. (c) After reconfiguration of socket C, the
registers in this socket are reset, then it is connected to the
systolic array PEs of application #2 (D, E) by reprogramming
the neighboring switch box.

25 FIG. 3: 2D SA mapping of the Faddeev algorithm.
FIG. 4: 1D SA obtained via vertical projection.
FIG. 5: 1 D FSA with looping to improve resource utiliza-

tion.
FIG. 6: Internal architecture of the 1D FSA PE (control

30 signals are omitted).
FIG. 7: (a) Architecture of the single precision floating-

point DSA. (b) Internal architecture of a DSA PE.

DETAILED DESCRIPTION OF THE INVENTION
35

Specification
FPGAs are increasingly being adopted as the primary on-

board computing system for autonomous deep space
vehicles. The need to support several complex applications

40 for navigation and image processing in a rapidly responsive
on-board FPGA based computer, requires exploring and
combining several design concepts such as systolic arrays,
hardware-software partitioning, and partial dynamic recon-
figuration (PDR). A microprocessor-coprocessor design is

45 employed that can simultaneously accelerate two single pre-
cision floating-point algorithms: e.g., extended Kalman filter
(EKE) and a discrete wavelet transform (DWT). Contribu-
tions include:

(i) a polymorphic systolic array framework comprising of
50 reconfigurable partial region based sockets 150 to accel-

erate algorithms amenable to being mapped onto linear
systolic arrays. When implemented on a low end Xilinx
Virtex4 SX35 FPGA the design provides a speedup of at
least 4.1 8x and 6.6 1 x over a state of the art micropro-

55 cessor used in spacecraft systems for the EKE and DWT
algorithms respectively.

(ii) Switch boxes 140 to enable communication between
static and partial reconfigurable regions 150 and a
simple protocol to enable schedule changes when a

60 socket's contents are dynamically reconfigured to alter
the concurrency of the participating systolic arrays.

(iii) A hybrid PDR method that combines Xilinx early
access partial reconfiguration (EAPR), on-chip bit-
stream decompression and bitstream relocation to

65 enable fast scaling of systolic arrays on the Polymorphic
systolic array framework. This technique provided a
2.7x improvement in reconfiguration time compared to

US 8,710,864 B2
3 4

an off-chip partial reconfiguration technique that used a
Flash card on the FPGA board.

A technique to augment PDR is the concept of bitstream
relocation. It involves slightly modifying the contents of a PB
to mould it into a form that can be loaded onto a similar but 5

different partial configuration region on the device. These
methods are strongly tied to a specific family of devices and
system architecture on the FPGA. One embodiment is imple-
mented by adding the decompression algorithm for obtaining
the next word in the bitstream. However thi s solution does not io
allow static routing in the partial regions.

While each of the PDR enabling/enhancing methods is
effective to a certain extent, a polymorphic systolic array can
benefit considerably through a suitable application of a com-
bination of these prior methods. 15

We disclose the system architecture implemented on the
FPGA, comprising of a microprocessor 110, a coprocessor
130 with a pseudo-cache 120, controller 210 and Polymor-
phic systolic array framework. Then we disclose the mapping
of the EKE and DWT algorithms onto this architecture and 20

how on-chip bitstream decompression/relocation methods
are used to facilitate dynamic scaling of the Polymorphic
systolic array framework.

In one embodiment a system combines an EKE and a DWT
on a Xilinx Virtex-4 SX35 FPGA using a flexible and dynami- 25

cally scalable systolic array co-processor and a MicroBlaze
host processor. The design uses a combination of techniques
such as dynamic partial bitstream decompression (PBD), par-
tial bitstream relocation (PBR) and floor planning of partial
reconfiguration (PR) regions. 30

While the KF is a well understood algorithm, it cannot
accurately model the non-linearity of complex real world
problems, for example, for navigation/guidance. Instead the
EKE a variant of the linear KF which dynamically linearizes
the non-linear system equations to enable state estimation is 35

used. The difficulty in porting the EKE onto an FPGA is
calculating the non-linear portions of the algorithm. More-
over these non-linear equations can change completely from
one problem to another necessitating a new architecture to be
designed for each specific problem. Therefore we partition 40

the EKE into linear and non-linear components that can be
solved on a co-processor accelerator and software respec-
tively.

Many image/signal applications such as compression, tar-
get recognition, classification etc. are composed of algo- 45

rithms that can be accelerated by linear SAs. A subset of these
algorithms and their SA implementations include: DWT,
K-means clustering, Bayes classifier, Eigen value calculation
etc. The DWT algorithm, a powerful filtering algorithm, in
particular has been used in aerospace applications for both 50

on-board and off-line image compression. While the prin-
ciples behind the wavelet transform are known to those
skilled in the art, we disclose a convolution kernel based
DWT algorithms, principally consist of using separable 1D
(dimension) filters along the horizontal and vertical direc- 55

tions each followed by sub-sampling. This process is often
repeated several times (also called decomposition) to obtain a
data structure that can be efficiently compressed.

PDR is the process of reconfiguring only a portion of an
FPGA at run-time, after initial configuration, while the other 60

portions remain active. The EAPR methodology from Xilinx
is the most supported approach, hence used in one embodi-
ment. However with EAPR for the Virtex4 class of FPGA
devices there are a few caveats. Two partial regions may not
overlap vertically in the same clock region. Therefore a clock 65

region dictates the granularity of the partial region sizes in the
floor planning phase.

As the complexity of FGPA architectures have increased,
so has the bitstream size that is required to configure the
device. With PDR methods being actively explored, there has
been a need to reduce the size of the bitstreams. This has
resulted in the exploration of classic compression algorithms
by the FPGA community. We disclose a Run-Length Encod-
ing (RLE) for the compression of partial bitstreams (PB) as it
provides a consistently good quality of performance for most
of the example cases without the need for storing a dictionary
on scarce BRAM resources.

The system on the FPGA consists of a microprocessor 110
and a co-processor 130 (FIG. la). One embodiment uses the
Xilinx soft-core MicroBlaze processor with an internal float-
ing-point unit and attached memory. The microprocessor 110
serves three purposes: (i) It is available for computing por-
tions of an algorithm that are deemed better suited for execu-
tion in software. For instance, in the EKE algorithm, the
non-linear functions are well suited for software based execu-
tion. (ii) It hosts software necessary to support partial
dynamic reconfiguration, bitstream decompression and relo-
cation. (iii) It is responsible for controlling and scheduling
operations onto the co-processor.

The co-processor 130 consists of the Polymorphic systolic
array framework, a controller 210 and a pseudo-cache 120. It
is controlled by instructions sent from the embedded micro-
processor 110 and transacts with a pseudo-cache 120 for data.
The pseudo-cache 120 is so named because while it does not
have all the features of a traditional cache, it serves as a
partially refreshable buffer storing a sub-set of the micropro-
cessor memory's contents and provides low latency access to
the co-processor 130. The size of the pseudo-cache 120 is
determined by the number of available BRAMs. A table on
the microprocessor 110 keeps dirty bits for both memories. If
data is made dirty by the microprocessor 110 the correspond-
ing pseudo-cache 12 blocks are freed, the data must be sent
back to the co-processor 130 if it's used there again. If data is
made dirty by the co-processor the cached version is sent back
to the microprocessor 110 when it's used there. This ensures
data is only synchronized between the microprocessor 11 and
co-processor 130 when necessary. Instructions for reading or
writing data to the co-processor 13 from the microprocessor
110, reading and writing data from the co-processor 13
pseudo-cache 120 to the Polymorphic systolic array frame-
work, programming the switch boxes 140, and resetting the
co-processor 130 are made available. One embodiment on the
V4 SX35 FPGA had a co-processor 130 pseudo-cache 120 of
4K words, with 128 lines/blocks, and 32 words perblock with
fully associative mapping.

In one embodiment the Polymorphic systolic array frame-
work is composed of Sockets 150 that are PR regions (FIG.
la). Each socket 150 has four 32-bit buses 142 and four 4-bit
buses 144 that link it to two neighboring switch boxes. The
32-bit buses 142 are intended to allow PEs residing in a socket
to receive and send single precision floating-point data types.
The 4-bit buses 144 are intended to carry control information.
Within a socket 150, asynchronous busmacros (BM) are
inserted to allow wires in the static regions to connect to wires
in the PR region. Each switch box 160 (FIG. lb) consists of
three multiplexers that can be programmed to allow routing
along the east-west directions 164, 162, 170, 172, east/west-
north 166, 168 and loops (east-east or west-west). By coor-
dinating the reconfiguration of sockets, controlling the mul-
tiplexers inside switch boxes, it is possible to dynamically
scale the number of participating PEs in a systolic array.

When two systolic arrays are concurrently sharing the
Polymorphic systolic array framework, it is possible to scale-
up one systolic array by increasing the number of sockets to

US 8,710,864 B2
5

host its PEs, at the cost of scaling-down a proportional num-
ber of PEs belonging to the other systolic array. One embodi-
ment uses the transfer of control protocol shown with an
example in FIG. 2. The first step involves disconnecting a
socket 150 (socket C in FIG. 2) from the SA it currently
belongs to (App 1). This requires re-routing data and control
signals inside neighboring switch boxes 140 (FIG. 2a). The
second step (FIG. 2b) involves reconfiguring the socket 220
by initiating the process from the microprocessor via the OPB
HWICAP (on-chip peripheral bus based hardware internal
configuration access port). During this process both systolic
arrays, are still functional, albeit with one of them having a
lesser number of PEs. The third step involves resetting the PE
in the newly configured socket, because it is not possible to set
contents of registers in this region to a default known state (a
limitation of EAPR). The fourth step involves re-routing sig-
nals in the appropriate switch boxes to augment SA of appli-
cation 2 with the newly created PE (FIG. 2c).

The EKE algorithm was partitioned into non-linear func-
tions (state prediction, measurement prediction and solving
the 7acobian matrices) and matrix operations (state error
covariance prediction, measurement residual, covariance of
the measurement residual, Kalman gain calculation, state
estimate update and state error covariance estimate update).
The non-linear functions are unique to each EKE instance
therefore they are implemented in software on an embedded
microprocessor. However, since the matrix operations in pre-
dict and update phases are consistent across many EKE
instances and vary only in size, so they are mapped onto the
systolic array in the co-processor using the Faddeev algo-
rithm. This algorithm is a popular method for computing the
Schur Compliment, D+CA- 'B (where DPxM, ANxN,
BNxM, CPxN are all matrices), given an arrangement

~ C D1.

By properly arranging the four inputs any three operations
(matrix inverse, multiplication and addition) or a combina-
tion of the three can be performed. For example, to add two
matrices X and Y, A must be set to an identity matrix, B
assigned to X, C set as an identity matrix and D assigned to Y.
This resolves toY+I*I-i *X=Y+X.

TABLE 1

Boundary Cell

Matrix
Row XI> IF Q swap 	New

A/B 1 —P/X 1 	X
0 _X/P 0 	P

C/D 1/0

TABLE 2

Internal Cell

swap New P

I x
0 P

A 2D SA scales by 0(2N) PEs while a 1D linear SA scales
by O(1). In order to have reasonable granularity for scaling in

6
this application, a linear SA was designed by projecting the
2D array 310 onto a vertical array consisting of one boundary
cell 350 and one internal cell 360 on each level as shown in
FIGS. 3 and 4. Tables 1 and 2 summarize the functionality of

5 the boundary 350 and internal 360 cells of FIG. 3 respectively,
where X is the input element from the top, P is an internal
register contained in each cell, Q is the quotient passed from
the boundary cell to each internal cell of a row, and swap is a
control signal which is also passed from the boundary cell to

IO each internal cell of a row. Each element in the stream is
tagged as either the first row, last row, A/B row or C/D row as
shown in FIG. la and scheduled onto the 1D SA as shown in
FIG. 4. A PE is initialized (internal FIFO register is filled)

15 when it receives the elements of the first row, performs trian-
gulation ofA when it receives elements of NB rows, performs
annulling C when it receives elements of C/D rows and is
un-initialized (internal FIFO register is emptied) when it
receives elements of the last row. For a scalable SA the num-

20 ber of processing elements (PE) in a SA and the size of the
input must be independent, since the number of PEs can
change irrespective of the input. In this vertical mapping an
oversized data set is handled by recursively processing the
data until the result is reached (symbolized as a loop back

25 dotted line in FIGS. 4 and 5). As the number of PEs increases
the number of times the output needs to be recursively pro-
cessed is proportionally reduced according to

30 	 N

~2R~

where R is the number of resources/sockets and N is the
35 height and width of the A input matrix. For an input of size

4NxN (where A, B, C, D are of size NxN) the size of the final
output is NxN and output of each level is (2N-i)x(2N-i) for
i=1 ... N. Even if another stream is started immediately after
the first, there will be a gap of control steps in the data stream

40 where the PEs are not being utilized. So the data stream is
looped back through the PEs to increase utilization. Each PE
buffers both top and bottom input streams, and then multi-
plexes each stream to the boundary and internal cells (FIG. 5).
This systolic array will henceforth be referred to as an FSA

45 (Faddeev systolic array). The internal structure of the PE with
pipelined single precision floating-point cores is shown in
FIG. 6 which comprises of FIFO registers, buffers 710,
switches 720 and single precision floating-point arithmetic
cores 790.

50 	It can be observed that if each arithmetic operation had a
latency of one this architecture would be inefficient, but in the
case of single precision arithmetic, each operation takes mul-
tiple cycles. For instance, the single precision floating-point
divider is the largest floating-point core in the design. Its area

55 was reduced by 70% so that it could fit within a PE con-
strained to one clock region of the FPGA. In one embodiment
this was accomplished by reducing its input rate from one
element every clock cycle to one element every 14 clock
cycles. So after the divider starts calculating one element, up

60 to 14 elements of the previous row (stored in internal FIFO
buffers) can be supplied to the pipelined multiplier. Addition-
ally since this projection results in a coarse grained pipeline,
only a single input and output stream is required. This sim-
plifies the control and memory interface to the array. This is

65 important since the SA will be applied to a polymorphic SA
that must remain generic enough to handle many different
SAs.

US 8,710,864 B2
7

The systolic array implementation of the DSA (DWT sys-
tolic array) shown in FIG. 7 is another embodiment wherein
we have added buffers to allow usage of pipelined single
precision floating-point. The input is fed in at the left of the
systolic array while partial sums are fed from right to left
performing a convolution. Since the output is decimated by 2,
only half of the operations are required, so each PE will ignore
every other input. Each PE consecutively computes both the
low-pass and high-pass result. If the number of taps is greater
than the number of available PEs each level must be ran
multiple times

(11 R

times, where W is the number of taps and R is the number
resources/sockets) by passing the output of the SA to the
partial sums input of the last PE (symbolized as a dotted line
in FIG. 7). Therefore the DSA computes per run, a high pass
filter operation, a low pass filter operation and decimation by
two. This results in the need for three such runs to compute the
LL (lo-low), LH (low-high), HL (high-low) and HH (high-
high) sub-images for one level of decomposition. There are
several ways to support multiple levels of decomposition
know to those skilled in the art. In one embodiment a simple
approach is adopted of using the microprocessor to run soft-
ware necessary to schedule the appropriate data and tasks
onto the co-processor.

The PDR process consists of decompression software run-
ning on the MicroBlaze (specifically run length encoding
(RLE)) that consumes off-line compressed PB of a socket,
stored on BRAMs. One reason for storing partial bitstreams
on BRAMs is to avoid the alternative of storing them on an
external compact Flash card on the FPGA board which
involves large delays in reading, adversely affecting recon-
figuration times. The decompression software canproduce up
to 128 bytes of bitstream per iteration which are stored on the
processor's memory (software buffer). Then the processor
executes the bitstream relocation software that consumes the
128 bytes of the PB and modifies the frame address to enable
relocation into a different socket. The relocated bitstream is
then sent to the OPB HWICAP buffer (capacity of 2K bytes).
Therefore the decompression and relocation software is run
iteratively until the ICAP buffer is filled. At this point, the
MicroBlaze executes control software to trigger the ICAP
which then performs the configuration of the device. This is
effective at avoiding the need to allocate a much greater
number of BRAMs to store multiple uncompressed PBs for
each socket (88KB each for our test cases).

The reason for choosing a bitstream relocation method was
based on a salient feature of systolic arrays: The PEs are
architecturally identical. However even for identical architec-
tures the resulting PBs are different because frame addresses
(components of any bitstream) are unique to a physical loca-
tion on the device, requiring a different PB for every PR
region housing an architecturally identical PE. It is inefficient
to store several such PBs on BRAMs. It is more efficient to
store a single version of each type of possible PE and relocate
to the desired PR region. Efficient decompression of bit-
streams is supported by integrating the RLE decompression
algorithm into the relocation software to get the next word in
the bitstream. However, invoking this style of bitstream relo-
cation requires that there be no static routes passing through
a PR region because it only relocates frame addresses and

8
does not alter logic/routing contents (necessary in the case of
relocating PR regions containing static routing).

In the layout of the floor plan for one embodiment of the
system architecture the sockets (PR regions) of the Polymor-

5 phic systolic array framework have distributed on the left side
of the chip and the components of the static region (Micro-
Blaze, pseudo-cache, controller, switch boxes, etc.) are dis-
tributed on the right side of the chip, except for one clock
region on the left side that is also allocated for the static

io region. This clock region was allocated as part of the static
region because: (i) there is an I/O port that connects to the
System ACE on the ML402 board, requiring a static route
through this clock region, which prohibits relocating a PB to
it of the dimensions in this design. (ii) Additional BRAMs

15 were required for the Microprocessor memory and pseudo-
cache that were in scarcity, hence making them unavailable
for a sixth socket. The busmacros have been stacked on the
right side of the sockets, to avoid necessitating any static
routes passing through the PR regions. No static signals cross

20 the PR boundaries except for clock signals.
Since we do not define two PR regions stacked vertically in

one clock region, we limited the height of a PR region to one
clock region. This led us to explore any needed increase in the
logic packed in a PR region horizontally, rather than vertically

25 across clock regions. This design allows for the inclusion of
two or more smaller PEs within a socket. However this
decreases the granularity of reconfiguration as well as inter-
connections. Therefore we retained a simple framework for
the test cases where only one PE resides in a socket which

3o resides in one clock region.
All example cases where run on (a) Xilinx Virtex4 SX35

based ML 402 board running at 100 MHz and compared to
software implementations on a Virtutech Simics PowerPC
750 simulator [20] running at 150 MHz (equivalent to the

35 embedded RAD750 used in many space applications). The
FPGA based design ran the EKE algorithm 4.1 8x faster for
the example on an autonomous UAV (unmanned air vehicle)
and related parameters: number of states —l0, number ofinea-
surements=9, number of control inputs=6. This translates to

40 the dimensions of the matrices of the Faddeev algorithm
(ANx,v, Bzvxm, CPxzv, DPxM) as follows for the linear opera-
tions in terms of 3-tuples (N, M, P are the input dimensions to
the Faddeev algorithm per iteration): state error covariance
prediction (10,10,10; 10,10,10), measurement residual (1, 1,

45 9), covari ance ofthe measurement residual (10,9,10; 10, 9,9),
Kalman gain calculation (9,9, 10), state estimate update (9, 10,
10) and state error covariance estimate update (9,10,10; 10,9,
10). The FPGA based design ran the 2D DWT algorithm
6.61x faster for the 2D DWT algorithm, where the matrix

50 size-64x64 and the number of taps of the High pass and Low
pass filters was 4.

For the example case of the Polymorphic systolic array
framework in full FSA configuration, we observed that from
the perspective of the microprocessor, 45% of the time was

55 spent controlling accelerated operations, 25% was spent
doing non-linear operations, and 29% was spent transferring
data to or from the co-processor. Furthermore we observed
that 45% of the time was spent on the microprocessor and
55% on the accelerator. For the DSA mode of operation, 31 %

60 of the time was spent on data transfers and 69% of the time
was spent on data computations on the accelerator. The per-
formance of the pseudo-cache for the EKE test cases was 85%
hitrate at the granularity of a word (32 bits) since a word is the
smallest unit of data that can be replaced in the cache from the

65 microprocessor's memory. However for the DWT, there were
no pseudo-cache misses because the entire image was pre-
loaded prior to access by the Polymorphic systolic array

US 8,710,864 B2
9

framework and intermediate LP/HP filter results (after row
based operations) were carefully managed on the pseudo-
cache for the next set of LP/HP operations along columns.
The area occupied by a FSA-PE was 344 Slices, 8 DSPs, 3
FIFOs. The area occupied by a DSA-PE was 724 Slices, 8 5

DSPs, 5 FIFOs.
There are several factors that affect the reconfiguration

latency in this design, including: the size of the PB, time for
address relocation, location of the PR, time for bitstream
decompression, and external memory latency. The uncom- io
pressed PB for a socket configured as either a FSA-PE or a
DSA-PE is the same (88KB i.e. 44 BRAMs). However the
RLE compressed PB for a FSA-PE is 59KB and DSA-PE is
39KB. Some of more important observations made are sum-
marized, assuming the following conventions: F—PB stored 15

on flash card, C—PB is compressed and decompression is
performed by the MicroBlaze, B—PB is stored on BRAM,
R—PB is relocated with source and destination sockets on the
same side of the meridian line, PB is relocated with source
and destination sockets on different sides of the meridian line. 20

 reduces the reconfiguration latency by 86% compared
to <F>. This is the fastest reconfiguration method, but
requires significant use of valuable BRAMs (44 for
every PE's PB).

<B, C> reduces the number of BRAMs needed by a factor 25

of 2 compared to , but the decompression process
(in software) increases the reconfiguration time by
approximately 150%.

<B, R> added a negligible overhead over , but avoided
the need for extra sets of BRAMs to store a PB for each 30

socket.
The performance of <B, C, R> was similar to <B, C>, but

was significantly poorer for <B, C, M> because
the contents of each frame have to be bit-reversed when

relocating from one side of the chip to the other. 	35

Hence <B, C, R> performed about 2.7x better than <F>.
The above description discloses the invention including

preferred embodiments thereof. The examples and embodi-
ments disclosed herein are to be construed as merely illustra-
tive and not a limitation of the scope of the present invention 40

in any way. It will be obvious to those having skill in the art
that many changes may be made to the details of the above-
described embodiments without departing from the underly-
ing principles of the invention.

We claim: 	 45
1. An FPGA system comprising:
a microprocessor;
a coprocessor with a pseudo-cache,
a controller;
a polymorphic systolic array framework comprising a 50

reconfigurable partial region based sockets to accelerate
algorithms amenable to being mapped onto linear sys-
tolic arrays;

said microprocessor and said coprocessor and said control-
ler and said polymorphic systolic array framework are 55

communicably coupled;
wherein EKF and DWT algorithms are mapped onto said

architecture; and
on-chip bitstream decompression/relocation methods used

to facilitate the dynamic scaling of said polymorphic 60
systolic array framework.

10
2. A polymorphic systolic array system comprising:
reconfigurable partial region based sockets; and
on-chip bitstream decompression/relocation methods are

used to facilitate the dynamic scaling of said polymor-
phic systolic array framework.

3. The polymorphic systolic array system of claim 2
wherein:

said polymorphic systolic array framework accelerates
algorithms amenable to being mapped onto linear sys-
tolic arrays.

4. The polymorphic systolic array system of claim 2 further
comprising:

an extended Kalman filter algorithm mapped onto said
polymorphic systolic array system.

5. The polymorphic systolic array system of claim 2 further
comprising:

a discrete wavelet transform algorithm is mapped onto said
polymorphic systolic array system.

6. The polymorphic systolic array system of claim 2 further
comprising:

switch boxes wherein said switch boxes enable communi-
cation between static and partial reconfigurable regions;
and

a protocol to enable schedule changes when said socket's
contents are dynamically reconfigured to alter the con-
currency of the participating systolic arrays.

7. The polymorphic systolic array system of claim 2 further
comprising:

a hybrid PDR method that combines early access partial
reconfiguration (EAPR), on-chip bitstream decompres-
sion and bitstream relocation to enable fast scaling of
said systolic arrays.

8. A systolic array system comprising:
reconfigurable partial region based sockets;
a microprocessor communicably coupled to said reconfig-

urable partial regions based sockets; and
on-chip bitstream decompression/relocation methods are

used to facilitate the dynamic scaling of said polymor-
phic systolic array framework.

9. The systolic array system of claim 8 wherein:
said systolic arrays are polymorphic.
10. The systolic array system of claim 9 further compris-

ing:
a coprocessor communicably coupled to said reconfig-

urable partial regions based sockets.
11. The systolic array system of claim 10 further compris-

ing:
a pseudo-cache communicably coupled to said coproces-

sor.
12. The systolic array system of claim 11 further compris-

ing:
a controller communicably coupled to said microproces-

sor.
13. The systolic array system of claim 12 further compris-

ing bitstream relocation.
14. The systolic array system of claim 13 wherein:
said bitstream relocation involves slightly modifying the

contents of a partial bitstream to mould it into a form that
can be loaded onto a similar but different partial con-
figuration region on the device.

	8710864-p0001.pdf
	8710864-p0002.pdf
	8710864-p0003.pdf
	8710864-p0004.pdf
	8710864-p0005.pdf
	8710864-p0006.pdf
	8710864-p0007.pdf
	8710864-p0008.pdf
	8710864-p0009.pdf
	8710864-p0010.pdf
	8710864-p0011.pdf
	8710864-p0012.pdf
	8710864-p0013.pdf

